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Abstract Traditional methods to measure and survey the

productivity of oil wells mainly consisted of using test-

separator units with expensive instrumental, mechanical,

electrical, piping, and safety devices along with technical

and protective inspections, repair and operation services,

facilities, and infrastructures. Their inherent limitations are

time and cost consuming, uncertainty of well isolation in

test separator, and need to close the co-line wells, which

are diminished using multivariate thermal well testing. In

this study, an alternative method is presented using mul-

tivariate regression on thermal analysis data. The objective

of this study, which covered three distinctive major fields

of statistics, thermal analysis, and well testing, is predicting

the accurate productivity of oil wells using a single sample

point at the blend oil pipeline. This method is based in

performing multivariate regression of thermogravimetric

data obtained from the samples of Iranian offshore oil

wells. The results revealed that the used model appropriate

for crude oil blends, which thermal traces significantly

differ from each other. The calculated error function cor-

rected the blend equation by considering the eutectic points

and catalytic pyrolysis in lower and higher temperatures,

respectively. The model predicted the accurate productivity

of oil wells in real samples of blend oil pipeline.

Keywords Multivariate regression � Thermal analysis �
Well test

Introduction

Well performance testing is widely used to determine the

productivity of oil wells. Historically, the oil industry has

relied on traditional methods for individual well flow

monitoring. The first and the widespread technique of well

testing is multi-plot method, in which the production rate

of candidate well is plotted versus a variable parameter to

optimize the variable situation and to achieve the maxi-

mum productivity. This provides periodic well test infor-

mation using test-separators and sometimes supplemented

with real time temperature and pressure data gathered from

the individual wells between tests (see Fig. 1).

The empirical relationships used to estimate rate

between valid tests are often hampered by uncertainties and

errors associated with data limitations and varying flow

conditions. In addition, restricted access to the test-sepa-

rator often imposes constraints on when this information

can be gathered. Moreover, as the heavy oil has a density

similar to that of produced water, the use of test-separators

is not practical. The second technique of well testing is

well logging method, in which the logging tools provide

flow information as a function of well depth and inter-

mittently in time. However, the logs are complicated,

especially those designed for deviations beyond 45� from

vertical, where sophisticated hardware with sensor arrays

must be combined with empirical slip models to cope with

unsteady and non-uniform flows. Both conventional well

tests include a deliberate disturbance to the production to

determine the dynamic characteristics of a well. Moreover,

these traditional routine well testing methods simply pro-

vide a series of snap-shots of a well’s performance, which

may or may not reflect the production during the inter-

vening period. Furthermore, since those methods are nor-

mally shared among a number of wells, the actual
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performance of a well is only measured periodically or on

demand. Typically about 0.1–2.0% of the well production

is measured by these well testing methods. Thus, the sur-

veillance of individual oil wells is a discontinuous periodic

process. This is not optimal, as many well problems are not

determined until a well is re-tested.

These conventional flow-monitoring methodologies are

premised on the concept that oil production systems were

largely steady state and these snap shots in time were

adequate to manage the production. Besides, well test

conditions of isolated wells may be very different from

actual operating conditions with the parallel wells. How-

ever, in many oil fields, the well performance and the plant-

operating conditions can change rapidly and there is value

in more regular and closer well production monitoring. In

addition, when an oil field enters a production decline, it

requires a higher frequency of data gathering and higher

level of attention. Gathering real time data from oil wells

and related facilities has not been an issue, but validating

the gathered data, relating them to the production rates of

individual wells in a coherent manner, and then taking

prompt action is a challenge.

Historical review

In the early 1980’s, the multiphase flowmeters were

developed to be used in well testing. When the gas oil ratio

(GOR) is not too high and there is a room at the wellhead

surface, the surface multiphase flowmeters can be used, but

they have proved problematic owing to the high volume of

associated gas that evolves from the oil stream in pipe or

well, complicating the determination of oil or water vol-

umes. On platforms servicing many wells, there may not be

enough room or suitable space to install a multiphase meter

on each well, thus preventing continuous flow rate and cut

measurements on each of the wells. As found in the

test-separator method, this introduces the same type of

uncertainty owing to varying flow conditions. Recently,

downhole multiphase flowmeters have relied on a venturi

device combined with a pressure gauge. The combination of

differential pressure across the venturi and density provides

total mass flow rate. However, there are some difficulties

with these flowmeters. First, in multiphase wells (such as gas

lifted wells) they are not applicable. Second, in horizontal or

high-angle wells or where, there are multiple pay zones,

there is insufficient hydrostatic head for a practical density

reading. Third, the simple measurement of hydrostatic

density ignores the slip effect between the phases.

Measuring the three-phase fluids, such as crude oil in the

wells and the pipelines is the subject of many researches

[1]. Preparation of blown venturi flowmeters [2], estimat-

ing the bubble point in petroleum fluids flow line [3], and

using dielectric spectroscopy for characterization of annu-

lar fluids pumped from an oil layer [4] show some

advances in this field. Tan and Dong [5] measured the oil–

water two-phase flow rate by a V-cone meter. Wang et al.

[6] measured the in situ multiphase flow of oil, gas, and

water in a well fluid using a prompt gamma-ray neutron

activation analysis (PGNAA) and an on-line oil flowmeter

based upon the measurement of dielectric properties was

also reported [7].

Multivariate thermal model

It is well recognized that thermogravimetry (TG) and dif-

ferential scanning calorimetry (DSC) are rapid tools, which
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have been used in a wide variety of areas related to crude

oil analysis [8–13], coal reactivity, heat effect associated

with coal pyrolysis, biomass and mineral oils [14], com-

bustion, and kinetics [15]. Thermal analysis enables

physical and chemical phenomena occurring in the sub-

stance investigated during heating. Since the late 1960’s

and early 1970’s, thermal analysis methods have been used

to characterize petroleum and related products. DSC

commonly used to determine crystallinity because it is

rapid and more convenient than wet chemical methods that

require solvents for the extraction of crystallizing waxes.

Fulem et al. [16] studied the phase behavior of Maya crude

oil and its nano-filtered sub fractions using DSC and con-

structed the composition phase diagram for Maya crude oil.

Gjurova et al. [17] assessed the influence of the analytical

conditions, the kind and the amount of the petroleum and

petroleum products on the temperature interval of separa-

tion, the accuracy, the reproducibility and the detection

limit. Shishkin [18] examined the group hydrocarbon

composition of crude oils and oil heavy residues using TG

and DSC. In hyphenated techniques, the multiple data is

gathered during one run of experiment. These multiple data

can be including the type of the volatile products as a

function of the temperature, the mass loss of the sample as

a function of the temperature, and the quantitative analysis

of the evolved gases.

Evolved gas analysis (EGA) using hyphenated TG-

Fourier transform infrared spectroscopy (TG-FTIR) was

reported as a very useful tool to study the thermal

decomposition of sewage sludge [19] by means of multi-

variate analysis techniques. With the growing popularity of

coupled instruments, statistics models for manipulating

two-dimensional data have been developing. The increas-

ing memory capacity and computing power of the current

computers further expedites the process. The major

advantage of multivariate data is to extract more infor-

mation from mountainous two-dimensional data. Pyroly-

sis–gas chromatography–mass spectrometry (Py–GC–MS)

was used to study the thermal decomposition of Kraton

1107 copolymer. Principal component analysis (PCA) and

contour variance diagram were used for performing the

factor analysis. Statheropoulos et al. [20] used these results

for determination of the main thermal decomposition steps

of Kraton 1107 copolymer.

Smidt et al. [21] used simultaneous thermal analysis

methods (TG–MS and DSC) and compared a large data pool

of treated municipal solid waste originating from different

treatment plants. They concluded that thermal analysis in

association with multivariate statistical methods could be a

reliable method to verify efficient separation of the plastic

fraction, stabilization, and waste material composition.

Application of hyphenated thermal-statistical methods is not

limited to oil industry and there are many researches, such as

the study of Miltyk et al. [22] in pharmaceutical studies. They

completely discussed an example of building discriminant

models against the presence of acetaminophen in tablet.

They used partial least squares discriminant analysis

(PLS-DA) against detection of acetaminophen in the for-

mulations and they found a good model with root mean

square error (RMS), root mean square error of cross-vali-

dation (RMSECV), and root mean square error of prediction

(RMSEP) equal to 0.1068 (98.8% of explained variance),

0.148 (97.7% of explained variance), and 0.3918 (86.5% of

explained variance), respectively.

This article is intended to introduce the project of

author’s dissertation at a high level and share some of the

laboratorial experiences and findings of the first phase of its

development. The proposed model, which is based upon

thermal analysis in association with multivariate statistical

methods, is a reliable method to verify efficient oil well

surveillance. This was used for well-by-well production

surveillance and it can be operational at many of produc-

tion facilities worldwide, both offshore and onshore. In

addition, it can help resolve hydrocarbon allocation prob-

lems through real time reconciliation, increase production

through improved monitoring, allow an increase in time

between reduce travel to field locations and well tests.

Thermogravimetric theoretical models

The disappearance rate of a reactant during heating process

is assumed to be depended on two variables of conversion

degree and temperature. The general equation of reaction

rate in simple reactions is presented in Eq. 1 [23, 24]

�a ¼ da
dt
¼ k Tð Þg að Þ; ð1Þ

where a9 is the conversion rate of reactions, a depicts the

conversion degree (Eq. 2), t and T symbolize the heating

time and the temperature, respectively, and k(T) and g(a)

accounts for the temperature and conversion dependence of

the reaction (Eqs. 3, 4), respectively.

The conversion degree refers to the rate of sample

undergoing the reaction up to a defined temperature and is

determined by Eq. 2 [24]

a ¼ mi � mt

mi � mf

0\a\1 ð2Þ

where mi and mf are the initial and final masses of the

sample reacted, while mt presents the mass of the sample at

a certain time. Arrhenius equation in Eq. 3 [24] describes

the temperature dependence of kinetic constant, k(T)

k Tð Þ ¼ A exp
�E

RT

� �
; ð3Þ
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where A is the Arrhenius constant, and E and R show the

activation energy and gas constant, respectively. As Eq. 4

presents, the nth order reaction model is often used for TG

analysis of crude oils.

g að Þ ¼ 1� að Þn: ð4Þ

In dynamic conditions, the temperature varies linearly

with time with a constant heating rate (Eq. 5)

b ¼ dT

dt
: ð5Þ

Free model of Kissinger

Kissinger assumed that the reaction rate reaches to its

maximum at a peak temperature in differential thermo-

gravimetry (DTG) trace and proposed Eq. 6 [23, 25–27].

ln
b
T2

p

 !
¼ ln �AR

E
g0 ap

� �� �
� E

RTp

; ð6Þ

where Tp stand for peak temperature. The activation energy

is calculated from the slope of the straight line. Since the

peak temperatures are used in Eq. 8, one single E is given

by this model.

Free model of Augis Bennett

This model is based upon the thermal theory of transfor-

mation kinetics, developed by Avrami [28]. Equation 7

depicts this model [29].

ln
b

Tp � To

� �
¼ lnA� E

RTp

ð7Þ

To shows the onset temperature of DTG peak. As a result of

this model, an overall single value is obtained for E.

Free model of Ozawa Flynn wall (OFW)

In this model, according to Eq. 8, the temperature values at

fixed conversion degrees are measured for different heating

rates [23, 30]. In a constant a, the plot of lnb versus 1/T,

obtained from the curves recorded at several heating rates,

should give straight lines whose slopes gives E.

lnb ¼ ln
AE

Rg að Þ � 5:331

� �
� 1:052

E

RT
: ð8Þ

Free model of Kissinger Akahira Sunose (KAS)

This model (Eq. 9) is run like the OFW method to calculate

E [23].

ln
b
T2

� �
¼ ln

AR

Eg að Þ �
E

RT
: ð9Þ

Free model of Friedman

When combining Eqs. 1–5, the Friedman model (Eq. 10)

becomes, which suggests a differential method. For a

constant a, the plot of ln[b(da/dT)] versus 1/T, obtained

from experimental data recorded at several heating rates,

should be a straight lines whose slopes allow the evaluation

of activation energy.

ln b
da
dT

� �
¼ lnAþ ln g að Þð Þ � E

RT
: ð10Þ

Free model of Freeman Carroll

All the kinetic parameters in this model (Eq. 11) are

evaluated by a single TA curve [23].

Dln�a
Dln 1� að Þ ¼ �

E

R

D 1=Tð Þ
Dln 1� að Þ þ n: ð11Þ

Fitting model of Coats Redfern

This is the most popular fitting method (Eq. 12) for kinetic

analysis of TG [31].

ln
�ln 1�að Þ

T2

� �
¼ ln

AR

bE
1�2RT

E

� �� �
� E

RT
n¼ 1

ln
1� 1�að Þ1�n

T2 1�nð Þ

 !
¼ ln

AR

bE
1�2RT

E

� �� �
� E

RT
n 6¼ 1

8>>>><
>>>>:

:

ð12Þ

Fitting model of Arrhenius

Arrhenius in Eq. 13 assumed that the rate of sample mass

loss depends on the mass of the sample remaining, the rate

constant, and the temperature.

Log
dw=dt

w

� �
¼ log A� E

2:303RT
; ð13Þ

where w is the mass of sample remaining. When the curve

is plotted, there appears to be regions of marked linearity.

The slope of such a linear portion is proportional to E, and

the intercept to A.

Fitting model of maximum point

Decomposition rate reaches to a maximum value at the

peak of DTG curve. According to Eqs. 14 and 15, this peak

point at a single heating rate is used to evaluate the kinetic

parameters such as A and E. The main disadvantage of this

model is that only a single point in the thermogravimetric

curve is used.

A ¼ bE

RT2
m

� �
exp

E

RTm

� �
ð14Þ
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E ¼ RT2
m

cm

� dw

dT

� �
m

; ð15Þ

where Tm presents the absolute temperature at the maxi-

mum rate of mass loss and cm is the sample fraction,

remaining at the maximum rate of mass loss.

Fitting model of Ingraham marrier

This model (Eq. 16) determines heterogeneous reactions

exhibiting linear kinetics.

Log
dw

dT

� �
¼ logA� logb� logT � E

2:303RT
: ð16Þ

Fitting model of Horowitz Metzger

This model is fitted for first order kinetics (n = 1) and is

depicted as Eq. 17. By plotting the logarithmic term

against h, the activation energy is obtained [32].

ln �ln 1� að Þð Þ ¼ Eh
RT2

p

 !
; ð17Þ

where h = T - Tp.

Experimental method

Materials and samples

The oil samples were collected from one of the Iranian

offshore fields and their physical properties and chemical

characteristics (as the blend of individual wells) are pre-

sented in Tables 1, 2, respectively. The studied oil field is

consisted of five oil wells with different production rates.

Table 3 presented the characteristics of oil wells and

exported blend line.

Instrument and method

The TG and DTG experiments were performed using the

LABSYSTM model D/LABTG-1A thermal analyzer

system. In dynamic thermal analysis tests, six samples

(*9 mg) were heated from room temperature to 700 �C at

10 �C min-1 under nitrogen (100 mL min-1) atmosphere.

The calculations were performed using the Setsoft software

(see Fig. 2).

Calibrations

Two types of calibration were conducted for TG analyzer,

including temperature and mass calibration. The tempera-

ture was calibrated by Curie point method. Calibration for

mass change was carried out by addition and removal of

standard mass on the sample holder.

Result and discussions

The weighed sum method (WSM) model

The WSM, which is based upon partial least square (PLS),

was introduced as the simplest approach to correlate the

thermogravimetric trace of blend oil to those of its single

components or individual oil wells. This approach, which

is mathematically formulated as Eq. 18, assumes a linear

behavior of the blend oil with respect to the mass fractions

of its constituents [33]. This approach has been widely

applied in science and engineering to express the pyrolysis

of biomass as a sum of its major components i.e., hemi-

celluloses, cellulose, and lignin [34–36].

Ymix ¼ x1y1 þ . . .þ xnyn þ e ¼
Xn

i¼1

xiyi þ e ð18Þ

where Ymix is the calculated value at the thermogravimetric

trace of blend oil and yi the measured value at a

thermogravimetric trace of constituent i. n is the number

of individual oils taken into account and the coefficients xi

are unknown (i.e., the mass fractions of each component i

in the blend). e depicts the error function of this model. To

minimize the difference between the measured and the

calculated values, the PLS method was used for the xi in

Eq. 18. The objection function of SR is defined as Eq. 19:

Table 1 Physical properties of the blend crude oil used in the experiments

Specification Quantity Test method

Density/60�F 0.8092/g cm-3 ASTM D-4053

Density/70�F 0.8035/g cm-3 ASTM D-4054

Density/80�F 0.7989/g cm-3 ASTM D-4055

Viscosity/60�F 2.2139/cp ASTM D-445

Viscosity/70�F 1.9608/cp ASTM D-445

Viscosity/80�F 1.7133/cp ASTM D-445

Acidity number 0.29/mg KOH g-1oil ASTM D-664
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SR ¼
X
Ndata

ymix � Ymixð Þ2 ¼
X
Ndata

ymix �
Xn

i¼1

xiyi

 !2

; ð19Þ

where ymix shows the measured value at a thermogravi-

metric trace of individual oils and Ndata presents the

amount of data points taken into account. The WSM is

applied separately to the thermogravimetric traces. The

Excel Microsoft was used for the multivariable con-

strained minimization. To test the WSM, synthetic mix-

tures containing five crude oils from each of the wells

were prepared. Several synthetic blends were analyzed

and one of them is discussed, which consists of five

crude oil samples from five oil wells. Figure 3 illustrates

the TG traces of oil samples and blend oil. These traces

were normalized based upon the mass remained after

600 �C. Figure 4 depicts the related normalized TG

curves.

According to Fig. 3, at the end of thermal program, 40,

40, 50, 60, and 90% of oils from Bl 2P to Bl 12P were

remained without pyrolysis, respectively. This led to

remain about 60% of blend oil. Figure 5 shows the DTG

traces of oil samples. In this study, the maximum evapo-

ration rates were observed at 179, 168, 195, 163, and

194 �C for oil samples of individual wells from Bl 2P to Bl

12P, respectively. The DTG peak of blend (export) oil take

place at 158 �C.

According to Eq. 18, vector x was modeled as sum of

outer products between score vectors (a) and loading

Table 2 Chemical characteristics of the blend crude oil used in the experiments

Component Flashed liquid/mol% Flashed gas/mol% Stream liquid/mol%

N2 00.00 00.31 00.04

CO2 00.00 02.78 00.35

H2S 00.00 04.52 00.57

CH4 00.00 30.14 03.76

C2H6 00.00 12.02 01.50

C3H8 01.18 21.90 03.77

i-C4H10 01.16 07.25 01.92

n-C4H10 06.49 12.40 07.23

i-C5H12 02.73 03.21 02.79

n-C5H12 03.94 02.81 03.80

C6 08.08 01.86 07.30

C7 09.91 00.68 08.76

C8 10.97 00.12 09.61

C9 10.02 00.00 08.77

C10 07.71 00.00 06.75

C11 04.12 00.00 03.60

C12? 33.69 00.00 29.48

Total sulfur 00.85/mass%

Asphaltene 00.32/mass%

Wax 05.00/mass%

Table 3 Characteristics of the individual oil wells and the exported blend pipeline

Oil well Productivity range/BPDa Water content/% Well head pressure/bar Well head temperature/�C GORb/SCFc/BBL-1

Bl 2P 400–500 0 14 41 200

Bl 4P 4,200–4,400 25 30 66 266

Bl 5P 9,400–10,000 1 55 68 309

Bl 6P 7,100–7,500 23 18 67 347

Bl 12P 3,200–3,600 5 18 49 0

Export line 25,000–26,000 0 19 52 –

a Barrels per day
b Gas oil ratio
c Standard cubic feet per barrel
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vectors (b), where summation goes over all latent variables

extracted:

x ¼
Xn

i¼1

aib
T
i þ e: ð20Þ

The thermogravimetric data have been arranged in a

two-way array by taking the five samples for each of the oil

samples as columns and the thermal signal intensities (570

points) as rows, obtaining an A-matrix of dimensions

571 9 5 (Fig. 6).

According to schematic of Fig. 6, the b vector repre-

sents the mass fractions of pure components (individual

wells). This leads to calculate the proportional mass pro-

ductivity of oil wells after multiplying to their density.

Multiplying the resulted proportional volume productivities

by blend or exported flow gives the real productivity of oil

wells. The important parameter is computing the error

vector (e) to be added to AbT product. After computing the

error vector, a simple classical least square technique

solves the equation and the b vector is obtained. According

to Eq. 21, using Matlab software, the b vector was obtained

for synthetic oil blends.

b ¼ Anðxþ eÞ: ð21Þ

Error assessment

It is possible that a thermal degradation peak found for an

unknown blend oil does not correspond to a peak of an

individual samples taken from each well. In the following,

it is examined how sensitive the calculated blend oil is for

changes in the single components trace. Using synthetic

blend oils, the vector e was calculated and the resulted

graph is presented in Fig. 7.

According to Fig. 7, two distinct zone of evaporation

eutectic (ee) and catalytic cracking (cc) shows the main

sources of negative and positive errors, respectively. The

effect of ee is the dominant factor that appears during the

evaporation period, while cc reflected the deviation in

pyrolysis of blend oil rather than individual oils. The

transition temperature which ee converted to cc were

determined to be 460 �C as illustrated in Fig. 5 where the

decomposition rates were similar and the traces were

convened.
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Conclusions

The pyrolysis behavior of oil samples from single wells

and their blends was characterized using thermogravimet-

ric traces to be used as fingerprints of each oil well sample.

The thermal evaporation and degradation behavior of oil

blends were correlated with that of the single well samples

using partial least squares. It was shown that the WSM is

appropriate for crude oil blends, which TG traces signifi-

cantly differ from each other. However, if the pyrolysis

curves have similar trends, it is difficult to distinguish

between them. In the blend oil, the WSM gives larger

errors due to the mixture reactions at higher temperatures

than either of its components alone. Consequently, the

fractions of single components are not correctly predicted

even at low temperatures due to the changing the mass

transfer coefficients and eutectic points. The proposed error

function led to correct the blend equation by considering

the eutectic points and catalytic pyrolysis in lower and

higher temperatures, respectively. The proposed model has

predicted the accurate oil wells productivity using a single

sample point at the blend line.
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